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ABSTRACT

Background and aims Given the complexity of factors contributing to alcohol misuse, appropriate epistemologies and
methodologies are needed to understand and intervene meaningfully. We aimed to (1) provide an overview of computa-
tionalmodelingmethodologies,with an emphasis on systemdynamicsmodeling; (2) explainhowcommunity-based system
dynamics modeling can forge new directions in alcohol prevention research; and (3) present a primer on how to build
alcohol misuse simulation models using system dynamics modeling, with an emphasis on stakeholder involvement, data
sources andmodel validation. Throughout,weuse alcoholmisuse amongcollege students in theUnited States as a heuristic
example for demonstrating these methodologies. Methods System dynamics modeling employs a top–down aggregate
approach to understanding dynamically complex problems. Its three foundational properties—stocks, flows and feed-
backs—capturenon-linearity, time-delayed effects andother system characteristics. As amethodological choice, systemdy-
namics modeling is amenable to participatory approaches; in particular, community-based system dynamics modeling has
been used to build impactful models for addressing dynamically complex problems. Results The process of community-
based system dynamics modeling consists of numerous stages: (1) creating model boundary charts, behavior-over-time-
graphs and preliminary system dynamicsmodels using groupmodel-building techniques; (2)model formulation; (3)model
calibration; (4) model testing and validation; and (5) model simulation using learning-laboratory techniques.

Conclusions Community-based system dynamics modeling can provide powerful tools for policy and intervention
decisions that can result ultimately in sustainable changes in research and action in alcohol misuse prevention.
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INTRODUCTION

This is the second of two papers advocating for a paradigm
shift in alcohol prevention research. These papers seek
collectively to: (1) introduce howcomplex systems perspec-
tives can address some of the limitations of current alcohol
prevention research; and (2) provide readers with a basic
understanding of computational modeling methodologies,
grounded in alcohol misuse among college students in
the United States, demonstrating their potential for alcohol
prevention research and action.

Alcohol misuse continues to represent a significant
health and safety challenge [1–4]. While alcohol misuse

has received much research attention, the bulk of current
approaches—grounded in risk-factor epidemiology and lin-
ear causality—have targeted proximal and low-leverage
factors [5–7], typically overlooking interacting factors,
such as macrosocial, spatial and temporal considerations.
While these approaches have generated modest successes,
they have generally failed to reverse population-wide
trends and, in some cases, exacerbated the problems they
intend to solve [8–10].

To generate breakthroughs in alcohol prevention, a
paradigm shift is necessary [11]. In particular, holistic ap-
proaches grounded in complex systems perspectives are
warranted [12]. Embracing complex systems perspectives
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will provide greater understanding of the factors contribut-
ing to alcohol misuse, and consequently equip alcohol
prevention research and interventions more effectively. A
complex systems paradigm, which conceptualizes alcohol
misuse as a complex adaptive system and allows for the
application of computational modeling methodologies,
has the potential to lead to scientific and practical break-
throughs [11,13,14]. Unfortunately, complex systems
approaches are underutilized and often poorly understood
in alcohol prevention research. Therefore, our objectives
are threefold: (1) to provide an overview of computational
modeling, with an emphasis on the foundational properties
and mechanics of system dynamics modeling (SDM); (2) to
explain how community-based SDM can forge new
directions in alcohol prevention research; and (3) to pres-
ent a primer on how to build alcohol prevention models
using SDM, with an emphasis on stakeholders, data
sources and model validation. We use alcohol misuse
among college students in the United States as a heuristic
example for demonstrating these methodologies. We also
include supplementary materials pertaining to college
drinking, consisting of two heuristic concept models
(Supporting information, Concept models S1 and S2), a
walkthrough and simulation results for these two models
(Supporting information, Appendix S1) and a spreadsheet
with model parameters (Supporting information,
Table S2), to which we reference and direct the reader at
various points in this paper. The figures and supplementary
materials discussed here were developed using Vensim
software [15].

COMPUTATIONAL MODELING AND
SIMULATION

Problems which function as dynamically complex systems,
such as alcohol misuse [11,12,14], require the design and
development of mathematical representations (i.e. formal
models) to characterize the systems’ processes most effec-
tively [16]. Generally referred to as computational model-
ing and simulation techniques, these approaches allow
researchers and stakeholders to experiment with and test
intervention scenarios and their consequences over time,
which can greatly inform intervention decisions [12,17].
These computational formalisms are especially relevant
for alcohol prevention research, given that drinking behav-
iors are often resistant to interventions that seek to prevent
alcohol misuse [11,18,19]. This so-called ‘policy resis-
tance’ [18] generates a discouraging illusion of intractabil-
ity. Dynamic modeling methodologies offer means to
overcome policy resistance. Diverse modeling techniques
(i.e. agent-based modeling, SDM) have been utilized to
study complex systems among various health-related
domains, including obesity [20], chronic disease [21], illicit
drug use [22] and health-care [23].

While a discussion of the array of modeling methodolo-
gies is beyond the scope of this paper, herein we delve into
SDM—a dynamicmodeling approach particularly useful in
delineating critical underlying drivers in drinking
prevention. SDM is a top–down aggregate modeling ap-
proach that captures non-linear relationships between
components of complex systems with time horizons that
can extend far beyond those feasible in traditional
prevention research. A core assumption of SDM is that
the causes of a problem are endogenous—that change over
time occurs within the system due to feedback effects and
circular causality—although initial stimuli may be exoge-
nous [24]. Thus, SDM frames system behavior deliberately
as a consequence of system structure and not external
forces [24].

SDM simulates a series of mathematical equations [25].
Below is an example of a SDM equation from Fig. 1
(Supporting information, Concept model S1), where the
number of occasional drinkers in a given month t (Ot), is:

Ot ¼ Ot�1 þ pAI �At�1 � pOD �Ot�1 � pOI �Ot�1

þ pRD �Rt�1 � pLCO�Ot�1;

where:
• pAI = the probability that abstainers will escalate in a
given time-period (here, 1 month);

• Ai = number of students abstaining in month I;
• pOD = the probability an occasional drinker will
de-escalate (become an abstainer) in a given time step;

• pOI = the probability an occasional drinker will increase
their drinking;

• pRD = the probability that a regular drinker will de-
escalate their drinking;

• Ri = the number of regular drinkers at time I; and
• pLCO = the probability of leaving college for an
occasional drinking in a given month.
Using both concept models in the supplementary mate-

rials (Supporting information, Concept models S1 and S2;
also included here as Figs 1 and 2), we demonstrate here
how SDM is grounded in stocks, flows, auxiliary variables
and feedbacks loops [26]. The first concept model (Fig. 1
and Supporting information, Concept model S1) presents
what stocks and flows may look like in the context of
college drinking. The number of people in each stock (e.g.
‘abstainers’) is analogous to prevalence and determines
the current state of the system at any point in time. Flows
(e.g. ‘students initiating drinking’) are analogous to inci-
dence and determine changes to levels of stocks over time
[27]. The dynamic interplay between stocks and flows
dictate inertia, delays and other sources of disequilibrium
[27].

The second supplementary concept model (Fig. 2 and
Supporting information, Concept model S2) presents what
stocks and flows, together with auxiliary variables and
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feedback loops, may look like in the context of college stu-
dent alcohol misuse. Auxiliary variables (e.g. ‘total stu-
dents’) represent causal factors and can be embedded in
powerful causal pathways which generate chains of ‘ripple
effects’. These chains are represented in SDM by feedback
loops, which are where a path begins at any factor, moves
from link to link and returns to the original factor. For ex-
ample, in Fig. 2 (Supporting information, Concept model
S2), a feedback loop operationalizing peer influence of ab-
stainers on occasional drinkers is as follows: ‘abstainers’,

to ‘total students’, to ‘percentage of students who drink
regularly or heavily’, to ‘students ceasing drinking’ and
back to ‘abstainers’. Thus, through the lens of SDM, system
structure is defined by its feedback structure, where causal
factors are connected by arrows, with annotations about
polarities and time delays [28]. Ultimately, feedbacks deter-
mine system behavior and constitute key factors contribut-
ing to an outcome [28].

SD models are deterministic and can be presented as
both diagrams and mathematical equations, similar to

Figure 1 Basic stock and flow structure of alcohol misuse in college environments. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 2 Basic stock and flow structure of alcohol misuse in college environments, with system feedback. [Colour figure can be viewed at
wileyonlinelibrary.com]
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causal inference approaches. However, SDM differs in a
number of fundamental ways from these other techniques.
For example, a core purpose of SDM is to elicit and build
confidence in hypotheses and theories about how struc-
tural factors (or ‘mechanisms’) influence outcomes (e.g.
college student drinking) [27]. This focus on structural
mechanisms distinguishes SDM from other causal infer-
ence approaches as these models, including those based
in the general linear model (GLM), are oriented toward
goodness-of-fit and primarily isolate relationships between
hypothesized causal factors and outcomes by controlling
for confounding variables [19,29]. In contrast, SDM incor-
porates an array of factors holistically to explore how inter-
relationships within the system generate the mechanisms
relevant to outcomes of interest [28]. This emphasis on
structural mechanisms allows for testing multiple hypoth-
eses simultaneously [30] through the use of model simula-
tion [31]. The iterative model validation in SDM allows
researchers to generate hypotheses which evolve
concurrently with the SDmodel (i.e. ‘dynamic hypotheses’)
[32–34]. Finally, the causal loop diagram (CLD) of SDM
contrasts in several key ways with diagrammatic tech-
niques such as directed acyclic graphs, with perhaps the
most important being that CLDs incorporate feedback
loops deliberately and incorporate the influence of time,
which are reflected in time delay notations and expressed
in underlying model equations [28,35].

COMMUNITY-BASED SDM IN ALCOHOL
PREVENTION RESEARCH

SDM improves our ability to determine what forces shape
alcohol misuse over time, their inter-relationships and
how diverse factor configurations govern the dynamics of
the system [27]. Through its emphasis on stocks, flows
and feedbacks, SDM provides a detailed map of causal rela-
tionships between factors that affect system dynamics, and
uses quantitative and qualitative modeling principles to
conceptualize the underlying feedback loop structure and
simulate the repercussions of potential decisions over long
time-frames that would be pragmatically impossible to
explore using traditional approaches.

Community-based SDM, using group model-building
(GMB) approaches, can be used to generate impactful
models. GMB methodologies were developed because of
the importance of building models and conducting
simulations with stakeholders that leverage the diagram-
ming conventions of SDM. GMB is an iterative process in
which 10–12 stakeholders reach consensus under the
direction of facilitators and modelers [36–39].
Community-based SDM applications have resulted in
refined procedures for conducting GMB exercises for
maximum efficacy [36,40–42]. Detailed documentation,
providing walkthroughs for the design of GMB sessions, is

readily available [39,40,43], and an active community of
GMB experts continue to refine and disseminate best
practices.

Applied to college student alcoholmisuse prevention re-
search, GMB would be used to deconstruct alcohol misuse
and identify optimal prevention strategies. The GMB team
would be comprised of stakeholders representing govern-
ment, law enforcement, school, community and busi-
nesses; experts in alcohol prevention and public policy;
and modelers and facilitators [39]. Participants’ experi-
ences and interests in mental models of the problem at
hand would be expected to reflect diverse (possibly conflict-
ing) views on the etiology, perpetuation, exacerbation and
potential solutions. These differences are ultimately benefi-
cial, as: (a) divergent perceptions, strategies and alterna-
tives will be challenged to reach consensus on shared
mental models [42]; (b) a common language will emerge
to explain endogenous variables in college drinking and
their connections; (c) incorporation of stakeholder views
into models will be invaluable to designing and
implementing interventions [36]; and (d) involvement in
learning and strategic planning will increase model owner-
ship and buy-in to the process [39]. These insights could
then be used to develop a sequence of deliverables that
push thinking and capture knowledge, together compris-
ing dynamic hypotheses of the salient determinants of col-
lege drinking. Further, the process of unveiling latent
assumptions will help the GMB team to think endoge-
nously and holistically and turn inward their thoughts on
causes and remedies to design the structure of college
drinking [44].

Heuristic group model building

Facilitators guide the GMB team in a process of building a
college drinking prevention model, which begins by under-
standing its purpose and clarifying the rationale behind
using SDM. A particularly critical step is boundary-setting:
during this model formulation process, the boundary will
be set as the smallest number of factors that define the
model’s scope and where dynamic behavior is generated
as it arises within its internal structure [45]. Thoughtful
setting of model boundary is critical to proper delineation
of the system’s internal and external structure [28]. The
core assumption that causal factors are endogenous [24]
is critical to position the stakeholders to be ‘systems
thinkers’ so they can contribute meaningfully to GMB.
Boundary-setting requires closed boundaries around the
system under investigation, whereby circular causality is
imposed by closing off the system from exogenous influ-
ences, and causal influence is grounded solely within these
boundaries [24]. Boundary-setting endeavors reflect an es-
sential perspective, where causal influences are made en-
dogenous and therefore within the stakeholders’ sphere of
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control [24]. Boundary charts are developed which sepa-
rate variables as endogenous (involved in feedback loops,
whose behavior-over-time we seek to understand and ex-
plain) and exogenous (affecting endogenous variables,
whose change-over-time we do not seek to explain) [28].
An initial boundary chart might include mechanisms,
factors and policies that fall within government, business,
college and student environments and student alcohol
misuse.

The creation of behavior-over-time graphs (BOTG) fol-
lows boundary charts. Time-horizon selection is critical
for helping stakeholders to estimate the depth and breadth
of student alcohol misuse [46]. Time-horizon determina-
tion is linked with structural changes that have shaped
college drinking over time and provides a reference for
historical data for generating the BOTG. This provides an
understanding the trajectories of key variables that charac-
terize college drinking and how their underlying causes
and patterns have changed over time [28]. BOTG will: (a)
help define the time horizon that is necessary for model
building and simulation; (b) provide hints about possible
theoretical explanations of college drinking; (c) indicate if
important endogenous causal factors are missing; and (d)
guide SD model structure and plausibility [28,36].

Next, construction of the SD model begins. Figure 3
presents a simplified SDmodel, similar towhat may emerge
from a GMB process. The resulting sets of feedback loops,
and how they influence the dynamic movement of student
cohorts among stocks and flows, will be an initial explana-
tion of the system’s behavior. This heuristic model only in-
cludes ‘alcohol availability’, ‘campus wetness’, ‘drinking
social norms’, ‘law enforcement’ and ‘alternate transporta-
tion’, among key drivers, to represent students’ alcohol-

use-related transition, and shows how SDM can enhance
intervention efforts. It is a chain of stocks (boxes), flows
(arrows with valves) and auxiliary variables forming feed-
back loops. This model features several numbered feedback
loops. For example, Balancing loop B1a (Alcohol Availabil-
ity and Promotion) illustrates how government regulations
and business practices vis-à-vis alcohol availability, use and
promotion can influence student alcohol misuse.

These feedback loops show how cascading conse-
quences may affect student and community wellbeing
and how collective efforts may curb such consequences.
Examples include regulating ‘Happy Hour’ promotions,
restricting alcohol sales during sporting events, or institut-
ing ‘Safe Rides’ services. The lower-central section of this
model represents the current state of college drinking,
denoting that interacting market, government, commu-
nity, school and social-network forces shape alcohol misuse
in college environments. The upper-outer section repre-
sents a preventive scenario that explains how interacting
policies, organizational responses and their aggregate
capacity may prevent/reduce adverse consequences. The
simulation and comparison of ‘what-if ’ counterfactuals
will aid in navigating policy configurations needed to
trigger reductions in alcohol misuse.

Model calibration, simulation and validation

The mathematical representation of the SD model is a
system of non-linear, first-order differential equations [i.e.
d
dt x tð Þ ¼ f x; pð Þ, where x = vector of stocks, p = set of pa-

rameters and f = non-linear vector-valued function] [29]
to be converted into a testable and functioning form for
conducting computer simulations [28,46]. The best

Figure 3 Simplified system dynamics model of alcohol misuse in college environments. [Colour figure can be viewed at wileyonlinelibrary.com]
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available data are used to assign numerical values that in-
dicate how causal forces might relate to each other. Be-
cause variables are not excluded due to lack of extant
data, if any required data are unavailable or inadequate
to inform some components of the model, expert-driven
reasoned assumptions are typically made, and sensitivity
tests [16,28,46] are conducted to examine significance of
uncertain parameters. It is important to note that identifi-
cation of uncertain parameters does not discredit a SD
model. SD model building is typically an iterative endeavor
aimed at strengthening confidence in SDmodels over time.
Moreover, similar to confidence intervals in statistical
modeling, uncertain parameters influence the confidence
in conclusions drawn from subsequent model simulation.
Additionally, the discovery of uncertain parameters can
drive subsequent research endeavors, as gaps in knowledge
identified through SD model building can be interpreted as
critical avenues for future research [17] and can increase
confidence in the SD model over time as these gaps are
filled and uncertain parameters are specified with data.

SDmodels undergo testing regardingmodel parameters
and assumptions, including sensitivity and robustness
analyses, to build model confidence. This process may be
more or less rigorous depending on the model’s purpose.
For example, more rigorous testing is common for models
built to generate precise predictions. Using multiple data
sources, qualitative diagrams are then calibrated, tested
critically, analyzed and simulated [32] to identify optimal
policy configurations. Replicating time–series data is an
important way to test the model, as it is common to have
several model versions (varying in their structural assump-
tions and input parameter values). Comparing simulation
results across different versions to time–series data provides
means to assess whichmodels can bemade consistent with
historical trends through calibration.

Calibration data may come from a diverse range of his-
torical [e.g. Centers for Disease Control and Prevention
(CDC) surveys] and scientific literature (e.g. Core survey
[47]) sources. Additionally, a variety of domains can inform
calibration, such as: (1) governmental policies, including
those related to business, distribution and consumption;
(2) manufacturer policies, such as new product develop-
ment, advertising and pricing; (3) environmental factors,
including zoning, licensing, spatial distribution of alcohol
outlets and transportation infrastructure; and (4) college
policies, characteristics and cultural measures. Of particu-
lar value is the bulk of existing alcohol prevention research
(e.g. National College Health Assessment [48]), as myriad
studies and data sets can be combined synergistically in
model formation, calibration and testing [49].

A fully developed SDmodel would probably have several
hundred parameters, some of which might be of uncertain
accuracy. As SDM is a behavior-oriented simulation
method, sensitivity of behavior-pattern measures must be

evaluated to explore the effects of parameter uncertainty
on behavior patterns [34]. Models are tested to determine
the impacts of changing any given parameter, which al-
lows insight into the robustness of the model to its param-
eters and assumptions and indicates the importance of
missing/estimated data in overall model functioning [34].
One such technique involves Monte Carlo-style analyses,
where a model’s parameters are varied across a wide
range, and simulation results are then compared across
these different model configurations [50]. These ap-
proaches are intended to safeguard against faulty model
outputs due to uncertainties duringmodel calibration [16].

The simulation of calibrated and tested SD models can
improve the ability of stakeholders to anticipate probable ef-
fects of interventions, where pathways from interventions
to outcomes may be indirect, delayed or affected by nonlin-
earities. These benefits are demonstrated partially by the
second heuristic concept model (Fig. 2; Supporting infor-
mation, Concept model S2), which illustrates a scenario
where social norms of drinking or non-drinking might af-
fect changes in level of drinking over time. Here, the per-
centage of the population in the two heavier drinking
stocks is used to influence transitions toward and away
from these drinking states. Themathematical equation un-
derlying this scenario is:

Ot ¼ Ot�1 þ pAI � 0:5þ percRHt�1ð Þ �At�1

� pOD� 1:5� percRHt�1ð Þ �Ot�1 � pOI �Ot�1

þ pRD �Rt�1 � pLCO�Ot�1;

• percRHt–1 = the percentage of students who drink regu-
larly or heavily in time t–1 (other terms are defined
previously).
To illustrate the impact of these changes in the equa-

tion for Ot, in the extreme case where the entire population
is a regular or heavy drinker, pAI is multiplied by 1.5. If, in-
stead, no one drinks regularly or heavily, then pAI is multi-
plied by 0.5. As the simulation results (Table 1) reveal, in
both scenarios a 50% decrease in the escalation of occa-
sional drinkers generates the most effective outcomes com-
pared to similar reductions among regular drinkers or
abstainers, as it results in the lowest percentage of students
leaving school and the lowest percentage of students over-
all who are regular or high-risk drinkers. This suggests that
policies aimed at occasional drinkers represent superior in-
terventions, as they are comparatively more effective than
policies targeting the other two groups. While these results
are based on expert estimates and would require an actual
study for validation, these findings demonstrate the value
of SDM in capturing just a few of the complex relationships
which define college drinking into a functioning SD model
and using simulation to determine optimal intervention
configurations to shape college drinking.
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At the conclusion of the GMB process, and in the
context of a learning-laboratory environment, the stake-
holders, guided by modelers and facilitators, offer their in-
sights and engage in model testing and refinement and
model-informed policy planning to allow the team to refine
the final model. This leads to a second phase, where the rel-
ative effects of policy alternatives can be explored. These
scenarios can be simulated under various configurations,
thereby anticipating different rates of alcohol misuse in col-
lege settings. The purpose of studying these scenarios is to
predict future trajectories and determine how the direction
of these problems may plausibly change in varied interven-
tion configurations [46]. Without such tools, policy deci-
sions result from processes in which the analyses of the
consequences of policy alternatives are fragmented, static
and unsystematic, potentially reaching conclusions that
overlook important features of all complex systems [46].

CONCLUSIONS

There are many resources available for those interested in
integrating SDM into their work. First, Vensim software in-
cludes excellent support documentation, including a user
guide, tutorials and message boards. Secondly, because
SDM has been used in fields outside alcohol prevention re-
search, there are several strong books available. Thirdly,
several institutions offer work-shops on a regular basis,
including comprehensive work-shop offerings during the
annual conference hosted by the SystemDynamics Society.

Finally, the scientific literature includes a growing base of
knowledge from which to draw.

While underutilized in alcohol prevention, computa-
tional modeling and simulation can be of tremendous
value in prevention research. Because of its amenability
to participatory methodologies, community-based SDM
can provide avenues for creating sustainable changes in
college student alcohol misuse. Computational simulation
methodologies, such as SDM, can be integrated into the
current armamentarium of alcohol prevention research.
This integration can synergistically move alcohol
prevention research forward, providing avenues for break-
throughs in research and action that can curtail or reverse
alcohol misuse in college environments.
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Supporting Information

Additional Supporting Information may be found online in
the supporting information tab for this article.

Appendix S1 Walkthrough and simulation results for
supporting concept models.
Table S1 Model parameters for supporting concept
models.
Model S1 Basic stock and flow structure determining
level of alcohol consumption for cohort of first year col-
lege students.
Model S2 Basic stock and flow structure determining
level of alcohol consumption for cohort of first year col-
lege students, with system feedback structure.

System dynamics modeling in alcohol prevention 371

© 2017 Society for the Study of Addiction Addiction, 113, 363–371

 13600443, 2018, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/add.13953 by U

niversity O
f C

entral Florida, W
iley O

nline L
ibrary on [04/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


